3.134 \(\int \frac{x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^3} \, dx\)

Optimal. Leaf size=380 \[ \frac{3 x \left (x^2 \left (4 a B c-4 A b c+b^2 B\right )-A \left (4 a c+b^2\right )+4 a b B\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac{x^3 \left (-2 a B+x^2 (-(b B-2 A c))+A b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 \left (-\frac{-8 a A c^2+12 a b B c-6 A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+4 a B c-4 A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{-8 a A c^2+12 a b B c-6 A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+4 a B c-4 A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

-(x^3*(A*b - 2*a*B - (b*B - 2*A*c)*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2)
 + (3*x*(4*a*b*B - A*(b^2 + 4*a*c) + (b^2*B - 4*A*b*c + 4*a*B*c)*x^2))/(8*(b^2 -
 4*a*c)^2*(a + b*x^2 + c*x^4)) + (3*(b^2*B - 4*A*b*c + 4*a*B*c - (b^3*B - 6*A*b^
2*c + 12*a*b*B*c - 8*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) + (3*(b^2*B - 4*A*b*c + 4*a*B*c + (b^3*B - 6*A*b^2*c + 12*a*b*B*c - 8*
a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c
]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi [A]  time = 2.6797, antiderivative size = 380, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12 \[ \frac{3 x \left (x^2 \left (4 a B c-4 A b c+b^2 B\right )-A \left (4 a c+b^2\right )+4 a b B\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac{x^3 \left (-2 a B+x^2 (-(b B-2 A c))+A b\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 \left (-\frac{-8 a A c^2+12 a b B c-6 A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+4 a B c-4 A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{-8 a A c^2+12 a b B c-6 A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+4 a B c-4 A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]  Int[(x^4*(A + B*x^2))/(a + b*x^2 + c*x^4)^3,x]

[Out]

-(x^3*(A*b - 2*a*B - (b*B - 2*A*c)*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2)
 + (3*x*(4*a*b*B - A*(b^2 + 4*a*c) + (b^2*B - 4*A*b*c + 4*a*B*c)*x^2))/(8*(b^2 -
 4*a*c)^2*(a + b*x^2 + c*x^4)) + (3*(b^2*B - 4*A*b*c + 4*a*B*c - (b^3*B - 6*A*b^
2*c + 12*a*b*B*c - 8*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) + (3*(b^2*B - 4*A*b*c + 4*a*B*c + (b^3*B - 6*A*b^2*c + 12*a*b*B*c - 8*
a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c
]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 153.902, size = 408, normalized size = 1.07 \[ - \frac{x^{3} \left (A b - 2 B a + x^{2} \left (2 A c - B b\right )\right )}{4 \left (- 4 a c + b^{2}\right ) \left (a + b x^{2} + c x^{4}\right )^{2}} - \frac{x \left (12 A a c + 3 A b^{2} - 12 B a b - x^{2} \left (- 12 A b c + 12 B a c + 3 B b^{2}\right )\right )}{8 \left (- 4 a c + b^{2}\right )^{2} \left (a + b x^{2} + c x^{4}\right )} + \frac{3 \sqrt{2} \left (b \left (- 4 A b c + 4 B a c + B b^{2}\right ) - 2 c \left (4 A a c + A b^{2} - 4 B a b\right ) + \sqrt{- 4 a c + b^{2}} \left (- 4 A b c + 4 B a c + B b^{2}\right )\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{16 \sqrt{c} \sqrt{b + \sqrt{- 4 a c + b^{2}}} \left (- 4 a c + b^{2}\right )^{\frac{5}{2}}} - \frac{3 \sqrt{2} \left (b \left (- 4 A b c + 4 B a c + B b^{2}\right ) - 2 c \left (4 A a c + A b^{2} - 4 B a b\right ) - \sqrt{- 4 a c + b^{2}} \left (- 4 A b c + 4 B a c + B b^{2}\right )\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{16 \sqrt{c} \sqrt{b - \sqrt{- 4 a c + b^{2}}} \left (- 4 a c + b^{2}\right )^{\frac{5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4*(B*x**2+A)/(c*x**4+b*x**2+a)**3,x)

[Out]

-x**3*(A*b - 2*B*a + x**2*(2*A*c - B*b))/(4*(-4*a*c + b**2)*(a + b*x**2 + c*x**4
)**2) - x*(12*A*a*c + 3*A*b**2 - 12*B*a*b - x**2*(-12*A*b*c + 12*B*a*c + 3*B*b**
2))/(8*(-4*a*c + b**2)**2*(a + b*x**2 + c*x**4)) + 3*sqrt(2)*(b*(-4*A*b*c + 4*B*
a*c + B*b**2) - 2*c*(4*A*a*c + A*b**2 - 4*B*a*b) + sqrt(-4*a*c + b**2)*(-4*A*b*c
 + 4*B*a*c + B*b**2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b + sqrt(-4*a*c + b**2)))/(16*
sqrt(c)*sqrt(b + sqrt(-4*a*c + b**2))*(-4*a*c + b**2)**(5/2)) - 3*sqrt(2)*(b*(-4
*A*b*c + 4*B*a*c + B*b**2) - 2*c*(4*A*a*c + A*b**2 - 4*B*a*b) - sqrt(-4*a*c + b*
*2)*(-4*A*b*c + 4*B*a*c + B*b**2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b - sqrt(-4*a*c +
 b**2)))/(16*sqrt(c)*sqrt(b - sqrt(-4*a*c + b**2))*(-4*a*c + b**2)**(5/2))

_______________________________________________________________________________________

Mathematica [A]  time = 3.37491, size = 447, normalized size = 1.18 \[ \frac{\frac{8 a c x \left (A+B x^2\right )-4 a b B x+4 b x^3 (A c-b B)}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{2 x \left (4 b c \left (a B-3 A c x^2\right )+4 a c^2 \left (A+3 B x^2\right )+b^2 \left (3 B c x^2-7 A c\right )+2 b^3 B\right )}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{2} \sqrt{c} \left (b^2 \left (B \sqrt{b^2-4 a c}+6 A c\right )-4 b c \left (A \sqrt{b^2-4 a c}+3 a B\right )+4 a c \left (B \sqrt{b^2-4 a c}+2 A c\right )+b^3 (-B)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b^2 \left (B \sqrt{b^2-4 a c}-6 A c\right )+4 b c \left (3 a B-A \sqrt{b^2-4 a c}\right )+4 a c \left (B \sqrt{b^2-4 a c}-2 A c\right )+b^3 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{16 c} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^4*(A + B*x^2))/(a + b*x^2 + c*x^4)^3,x]

[Out]

((-4*a*b*B*x + 4*b*(-(b*B) + A*c)*x^3 + 8*a*c*x*(A + B*x^2))/((b^2 - 4*a*c)*(a +
 b*x^2 + c*x^4)^2) + (2*x*(2*b^3*B + 4*a*c^2*(A + 3*B*x^2) + 4*b*c*(a*B - 3*A*c*
x^2) + b^2*(-7*A*c + 3*B*c*x^2)))/((b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) + (3*Sqr
t[2]*Sqrt[c]*(-(b^3*B) - 4*b*c*(3*a*B + A*Sqrt[b^2 - 4*a*c]) + 4*a*c*(2*A*c + B*
Sqrt[b^2 - 4*a*c]) + b^2*(6*A*c + B*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*
x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]
]) + (3*Sqrt[2]*Sqrt[c]*(b^3*B + 4*b*c*(3*a*B - A*Sqrt[b^2 - 4*a*c]) + b^2*(-6*A
*c + B*Sqrt[b^2 - 4*a*c]) + 4*a*c*(-2*A*c + B*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2
]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^
2 - 4*a*c]]))/(16*c)

_______________________________________________________________________________________

Maple [B]  time = 0.102, size = 7611, normalized size = 20. \[ \text{output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4*(B*x^2+A)/(c*x^4+b*x^2+a)^3,x)

[Out]

result too large to display

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \frac{3 \,{\left (B b^{2} c + 4 \,{\left (B a - A b\right )} c^{2}\right )} x^{7} +{\left (5 \, B b^{3} + 4 \, A a c^{2} +{\left (16 \, B a b - 19 \, A b^{2}\right )} c\right )} x^{5} +{\left (19 \, B a b^{2} - 5 \, A b^{3} - 4 \,{\left (B a^{2} + 4 \, A a b\right )} c\right )} x^{3} + 3 \,{\left (4 \, B a^{2} b - A a b^{2} - 4 \, A a^{2} c\right )} x}{8 \,{\left ({\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{8} + 2 \,{\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x^{6} + a^{2} b^{4} - 8 \, a^{3} b^{2} c + 16 \, a^{4} c^{2} +{\left (b^{6} - 6 \, a b^{4} c + 32 \, a^{3} c^{3}\right )} x^{4} + 2 \,{\left (a b^{5} - 8 \, a^{2} b^{3} c + 16 \, a^{3} b c^{2}\right )} x^{2}\right )}} - \frac{3 \, \int \frac{4 \, B a b - A b^{2} - 4 \, A a c -{\left (B b^{2} + 4 \,{\left (B a - A b\right )} c\right )} x^{2}}{c x^{4} + b x^{2} + a}\,{d x}}{8 \,{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*x^4/(c*x^4 + b*x^2 + a)^3,x, algorithm="maxima")

[Out]

1/8*(3*(B*b^2*c + 4*(B*a - A*b)*c^2)*x^7 + (5*B*b^3 + 4*A*a*c^2 + (16*B*a*b - 19
*A*b^2)*c)*x^5 + (19*B*a*b^2 - 5*A*b^3 - 4*(B*a^2 + 4*A*a*b)*c)*x^3 + 3*(4*B*a^2
*b - A*a*b^2 - 4*A*a^2*c)*x)/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*
c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6
- 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2) - 3/
8*integrate((4*B*a*b - A*b^2 - 4*A*a*c - (B*b^2 + 4*(B*a - A*b)*c)*x^2)/(c*x^4 +
 b*x^2 + a), x)/(b^4 - 8*a*b^2*c + 16*a^2*c^2)

_______________________________________________________________________________________

Fricas [A]  time = 2.09226, size = 7628, normalized size = 20.07 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*x^4/(c*x^4 + b*x^2 + a)^3,x, algorithm="fricas")

[Out]

1/16*(6*(B*b^2*c + 4*(B*a - A*b)*c^2)*x^7 + 2*(5*B*b^3 + 4*A*a*c^2 + (16*B*a*b -
 19*A*b^2)*c)*x^5 + 2*(19*B*a*b^2 - 5*A*b^3 - 4*(B*a^2 + 4*A*a*b)*c)*x^3 - 3*sqr
t(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a
^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c
^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(B^2*a*b^5 - 16*(4*A
*B*a^3 - 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (
40*B^2*a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*c + (a*b^10*c - 20*a^2*b^8*c^2 + 160*a^
3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2
*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a
^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^10*c - 20*a^2*b^8*c^2 + 160
*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6))*log(-27*(5*B^
4*a^2*b^4 - A*B^3*a*b^5 - 16*A^4*a^2*c^4 + 40*(2*A^3*B*a^2*b - A^4*a*b^2)*c^3 +
(16*B^4*a^4 - 80*A*B^3*a^3*b + 40*A^3*B*a*b^3 - 5*A^4*b^4)*c^2 + (40*B^4*a^3*b^2
 - 40*A*B^3*a^2*b^3 + A^3*B*b^5)*c)*x + 27/2*sqrt(1/2)*(4*B^3*a^2*b^7 - A*B^2*a*
b^8 - 256*A^3*a^4*c^5 + 128*(2*A*B^2*a^5 + 2*A^2*B*a^4*b + A^3*a^3*b^2)*c^4 - 64
*(4*B^3*a^5*b + 2*A*B^2*a^4*b^2 + 3*A^2*B*a^3*b^3)*c^3 + 8*(24*B^3*a^4*b^3 + 6*A
^2*B*a^2*b^5 - A^3*a*b^6)*c^2 - (48*B^3*a^3*b^5 - 8*A*B^2*a^2*b^6 + 4*A^2*B*a*b^
7 - A^3*b^8)*c - (4096*(2*B*a^8 - 3*A*a^7*b)*c^7 - 2048*(2*B*a^7*b^2 - 7*A*a^6*b
^3)*c^6 - 1280*(2*B*a^6*b^4 + 5*A*a^5*b^5)*c^5 + 1280*(2*B*a^5*b^6 + A*a^4*b^7)*
c^4 - 80*(10*B*a^4*b^8 + A*a^3*b^9)*c^3 + 8*(14*B*a^3*b^10 - A*a^2*b^11)*c^2 - (
6*B*a^2*b^12 - A*a*b^13)*c)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c
^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 102
4*a^7*c^7)))*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3
*b - 4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*
c + (a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^
2*c^5 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 2
0*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*
c^7)))/(a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5
*b^2*c^5 - 1024*a^6*c^6))) + 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x
^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4
*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^
2)*x^2)*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b -
4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*c + (
a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5
 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3
*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7))
)/(a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*
c^5 - 1024*a^6*c^6))*log(-27*(5*B^4*a^2*b^4 - A*B^3*a*b^5 - 16*A^4*a^2*c^4 + 40*
(2*A^3*B*a^2*b - A^4*a*b^2)*c^3 + (16*B^4*a^4 - 80*A*B^3*a^3*b + 40*A^3*B*a*b^3
- 5*A^4*b^4)*c^2 + (40*B^4*a^3*b^2 - 40*A*B^3*a^2*b^3 + A^3*B*b^5)*c)*x - 27/2*s
qrt(1/2)*(4*B^3*a^2*b^7 - A*B^2*a*b^8 - 256*A^3*a^4*c^5 + 128*(2*A*B^2*a^5 + 2*A
^2*B*a^4*b + A^3*a^3*b^2)*c^4 - 64*(4*B^3*a^5*b + 2*A*B^2*a^4*b^2 + 3*A^2*B*a^3*
b^3)*c^3 + 8*(24*B^3*a^4*b^3 + 6*A^2*B*a^2*b^5 - A^3*a*b^6)*c^2 - (48*B^3*a^3*b^
5 - 8*A*B^2*a^2*b^6 + 4*A^2*B*a*b^7 - A^3*b^8)*c - (4096*(2*B*a^8 - 3*A*a^7*b)*c
^7 - 2048*(2*B*a^7*b^2 - 7*A*a^6*b^3)*c^6 - 1280*(2*B*a^6*b^4 + 5*A*a^5*b^5)*c^5
 + 1280*(2*B*a^5*b^6 + A*a^4*b^7)*c^4 - 80*(10*B*a^4*b^8 + A*a^3*b^9)*c^3 + 8*(1
4*B*a^3*b^10 - A*a^2*b^11)*c^2 - (6*B*a^2*b^12 - A*a*b^13)*c)*sqrt((B^4*a^2 - 2*
A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^
5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3
- 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*
a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*c + (a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c
^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^
2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*
c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^
6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6))) - 3*sqrt(1/2)*((b^4
*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^
6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*
(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A
^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b
^3 - 20*A*B*a*b^4 + A^2*b^5)*c - (a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 -
640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c
 + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 +
 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3
 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6))*log(-27*(5*B^4*a^2*b^4 -
A*B^3*a*b^5 - 16*A^4*a^2*c^4 + 40*(2*A^3*B*a^2*b - A^4*a*b^2)*c^3 + (16*B^4*a^4
- 80*A*B^3*a^3*b + 40*A^3*B*a*b^3 - 5*A^4*b^4)*c^2 + (40*B^4*a^3*b^2 - 40*A*B^3*
a^2*b^3 + A^3*B*b^5)*c)*x + 27/2*sqrt(1/2)*(4*B^3*a^2*b^7 - A*B^2*a*b^8 - 256*A^
3*a^4*c^5 + 128*(2*A*B^2*a^5 + 2*A^2*B*a^4*b + A^3*a^3*b^2)*c^4 - 64*(4*B^3*a^5*
b + 2*A*B^2*a^4*b^2 + 3*A^2*B*a^3*b^3)*c^3 + 8*(24*B^3*a^4*b^3 + 6*A^2*B*a^2*b^5
 - A^3*a*b^6)*c^2 - (48*B^3*a^3*b^5 - 8*A*B^2*a^2*b^6 + 4*A^2*B*a*b^7 - A^3*b^8)
*c + (4096*(2*B*a^8 - 3*A*a^7*b)*c^7 - 2048*(2*B*a^7*b^2 - 7*A*a^6*b^3)*c^6 - 12
80*(2*B*a^6*b^4 + 5*A*a^5*b^5)*c^5 + 1280*(2*B*a^5*b^6 + A*a^4*b^7)*c^4 - 80*(10
*B*a^4*b^8 + A*a^3*b^9)*c^3 + 8*(14*B*a^3*b^10 - A*a^2*b^11)*c^2 - (6*B*a^2*b^12
 - A*a*b^13)*c)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*
b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))
*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a
^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*c - (a*b^10*
c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024
*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^
3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^
10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1
024*a^6*c^6))) + 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*
c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6
- 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt
(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A^2*a^2*b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a^2*b^
2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b^3 - 20*A*B*a*b^4 + A^2*b^5)*c - (a*b^10*c - 2
0*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*
c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 1
60*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^10*c
- 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a
^6*c^6))*log(-27*(5*B^4*a^2*b^4 - A*B^3*a*b^5 - 16*A^4*a^2*c^4 + 40*(2*A^3*B*a^2
*b - A^4*a*b^2)*c^3 + (16*B^4*a^4 - 80*A*B^3*a^3*b + 40*A^3*B*a*b^3 - 5*A^4*b^4)
*c^2 + (40*B^4*a^3*b^2 - 40*A*B^3*a^2*b^3 + A^3*B*b^5)*c)*x - 27/2*sqrt(1/2)*(4*
B^3*a^2*b^7 - A*B^2*a*b^8 - 256*A^3*a^4*c^5 + 128*(2*A*B^2*a^5 + 2*A^2*B*a^4*b +
 A^3*a^3*b^2)*c^4 - 64*(4*B^3*a^5*b + 2*A*B^2*a^4*b^2 + 3*A^2*B*a^3*b^3)*c^3 + 8
*(24*B^3*a^4*b^3 + 6*A^2*B*a^2*b^5 - A^3*a*b^6)*c^2 - (48*B^3*a^3*b^5 - 8*A*B^2*
a^2*b^6 + 4*A^2*B*a*b^7 - A^3*b^8)*c + (4096*(2*B*a^8 - 3*A*a^7*b)*c^7 - 2048*(2
*B*a^7*b^2 - 7*A*a^6*b^3)*c^6 - 1280*(2*B*a^6*b^4 + 5*A*a^5*b^5)*c^5 + 1280*(2*B
*a^5*b^6 + A*a^4*b^7)*c^4 - 80*(10*B*a^4*b^8 + A*a^3*b^9)*c^3 + 8*(14*B*a^3*b^10
 - A*a^2*b^11)*c^2 - (6*B*a^2*b^12 - A*a*b^13)*c)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c
+ A^4*c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 +
1280*a^6*b^2*c^6 - 1024*a^7*c^7)))*sqrt(-(B^2*a*b^5 - 16*(4*A*B*a^3 - 5*A^2*a^2*
b)*c^3 + 40*(2*B^2*a^3*b - 4*A*B*a^2*b^2 + A^2*a*b^3)*c^2 + (40*B^2*a^2*b^3 - 20
*A*B*a*b^4 + A^2*b^5)*c - (a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*a^4
*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*
c^2)/(a^2*b^10*c^2 - 20*a^3*b^8*c^3 + 160*a^4*b^6*c^4 - 640*a^5*b^4*c^5 + 1280*a
^6*b^2*c^6 - 1024*a^7*c^7)))/(a*b^10*c - 20*a^2*b^8*c^2 + 160*a^3*b^6*c^3 - 640*
a^4*b^4*c^4 + 1280*a^5*b^2*c^5 - 1024*a^6*c^6))) + 6*(4*B*a^2*b - A*a*b^2 - 4*A*
a^2*c)*x)/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 1
6*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^
3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4*(B*x**2+A)/(c*x**4+b*x**2+a)**3,x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 37.0532, size = 1, normalized size = 0. \[ \mathit{Done} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((B*x^2 + A)*x^4/(c*x^4 + b*x^2 + a)^3,x, algorithm="giac")

[Out]

Done